翻訳と辞書
Words near each other
・ Depor
・ DePorres Club
・ Deport Racism Organization
・ Deport Them
・ Deport, Texas
・ Depend on Me
・ Depend on You
・ Dependability
・ Dependability benchmarking
・ Dependability state model
・ Dependant
・ Depende
・ Dependence analysis
・ Dependence logic
・ Dependence receptor
Dependence relation
・ Dependencies of Guadeloupe
・ Dependencies of Norway
・ Dependency
・ Dependency (band)
・ Dependency (project management)
・ Dependency (religion)
・ Dependency (UML)
・ Dependency grammar
・ Dependency graph
・ Dependency hell
・ Dependency injection
・ Dependency inversion principle
・ Dependency need
・ Dependency network


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dependence relation : ウィキペディア英語版
Dependence relation

In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.
Let X be a set. A (binary) relation \triangleleft between an element a of X and a subset S of X is called a ''dependence relation'', written a \triangleleft S, if it satisfies the following properties:
* if a \in S, then a \triangleleft S;
* if a \triangleleft S, then there is a finite subset S_0 of S, such that a \triangleleft S_0;
* if T is a subset of X such that b \in S implies b \triangleleft T, then a \triangleleft S implies a \triangleleft T;
* if a \triangleleft S but a \not\!\triangleleft S-\lbrace b \rbrace for some b \in S, then b \triangleleft (S-\lbrace b \rbrace)\cup\lbrace a \rbrace.
Given a ''dependence relation'' \triangleleft on X, a subset S of X is said to be ''independent'' if a \not\!\triangleleft S - \lbrace a \rbrace for all a \in S. If S \subseteq T, then S is said to ''span'' T if t \triangleleft S for every t \in T. S is said to be a ''basis'' of X if S is ''independent'' and S ''spans'' X.
Remark. If X is a non-empty set with a dependence relation \triangleleft, then X always has a basis with respect to \triangleleft. Furthermore, any two bases of X have the same cardinality.
==Examples==

* Let V be a vector space over a field F. The relation \triangleleft, defined by \upsilon \triangleleft S if \upsilon is in the subspace spanned by S, is a dependence relation. This is equivalent to the definition of linear dependence.
* Let K be a field extension of F. Define \triangleleft by \alpha \triangleleft S if \alpha is algebraic over F(S). Then \triangleleft is a dependence relation. This is equivalent to the definition of algebraic dependence.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dependence relation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.